Intratumoral delivery of boronated epidermal growth factor for neutron capture therapy of brain tumors.
نویسندگان
چکیده
The gene for epidermal growth factor receptor (EGFR) is amplified or overexpressed in high-grade gliomas but is low or undetectable in normal brain. Recently, there has been increasing interest in using epidermal growth factor (EGF)-based bioconjugates as targeting agents for brain tumors. In the present study, we have investigated the potential use of boronated EGF as a delivery agent for boron neutron capture therapy, which is based on the capture reaction that occurs when 10B, a stable isotope, is irradiated with low-energy thermal neutrons. A fourth generation starburst dendrimer was boronated and linked to EGF using heterobifunctional reagents. Either wild-type or EGFR gene transduced C6 glioma cells (C6EGFR), which expressed 10(5)-10(6) receptor sites/cell, were stereotactically implanted into the right cerebral hemisphere of Fischer rats. Four weeks later, the rats received either i.v. or intratumoral (i.t.) injection of 131I-labeled boronated starburst dendrimer (BSD) or BSD-EGF. The biodistribution of 131I-BSD-EGF and 131I-BSD was studied by means of whole-body scintigraphy, autoradiography, and gamma scintillation counting. Following i.t. injection of 131I-BSD-EGF, 21.8% of the injected dose per gram tissue (% ID/g) was localized in C6EGFR tumors at 24 h and 16.3% at 48 h compared to 5 and 1.3% ID/g in C6 wild-type tumors, respectively, and 0.01 and 0.006% ID/g, respectively, for i.v. injected animals at the corresponding times. In contrast, following i.t. injection of BSD-EGF, only 0.01-0.1% ID/g was localized in the liver and spleen at 24 and 48 h compared to 5-12% ID/g following i.v. injection. Our data indicate that direct i.t. injection can selectively deliver BSD-EGF to EGFR-positive gliomas and suggest that intracerebral administration may be the most effective way for delivering EGF-based bioconjugates to EGFR-positive brain tumors.
منابع مشابه
Convection-enhanced delivery of boronated epidermal growth factor for molecular targeting of EGF receptor-positive gliomas.
Convection enhanced delivery (CED) is potentially a powerful method to improvethe targeting of macromolecules to the central nervous system by applying a pressure gradient to establish bulk flow through the brain interstitium during infusion. The purpose of the present study was to evaluate CED as a means to improve the intracerebral and intratumoral (i.t.) uptake of a heavily boronated macromo...
متن کاملMolecular Targeting of the Epidermal Growth Factor Receptor
Success of boron neutron capture therapy (BNCT) is dependent on cellular and molecular targeting of sufficient amounts of boron-10 to sustain a lethal B (n, ) Li capture reaction. The purpose of the present study was to determine the efficacy of boronated epidermal growth factor (EGF) either alone or in combination with boronophenylalanine (BPA) as delivery agents for an epidermal growth factor...
متن کاملMolecular targeting of the epidermal growth factor receptor for neutron capture therapy of gliomas.
Success of boron neutron capture therapy (BNCT) is dependent on cellular and molecular targeting of sufficient amounts of boron-10 to sustain a lethal (10)B (n, alpha) (7)Li capture reaction. The purpose of the present study was to determine the efficacy of boronated epidermal growth factor (EGF) either alone or in combination with boronophenylalanine (BPA) as delivery agents for an epidermal g...
متن کاملSynthesis of Carborane-Containing Porphyrin Derivatives for the Boron Neutron Capture Therapy of Tumors
The treatment of malignant brain tumors using conventional therapies and surgery often leads to tumor recurrence and/or unwanted side effects. Boron neutron capture therapy (BNCT) is a binary and localized form of treatment for brain tumors and other difficult-to-treat cancers that uses nontoxic boron-containing agents. Boronated porphyrins and derivatives constitute a class of highly promising...
متن کاملطراحی و بهینهسازی طیف نوترونی برای درمان تومورهای عمیق مغزی به روش BNCT با کاهش آسیب رسیده به پوست
Boron neutron capture therapy (BNCT) is an effective method for treatment of deep seated brain tumors. This method consists of two stages: injection of boron compound in the patient body, and then irradiation of the region tumors with the neutron beam. It allows for delivery of high linear energy transfer (LET) radiation (particles 4He and 7Li nuclei) to tumors at the cellular level whilst avoi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cancer research
دوره 57 19 شماره
صفحات -
تاریخ انتشار 1997